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DIFFRACTION OF A DIPOLE FIELD BY A CONICAL FIELD

by P.L.E. Uslenghi
The Univsrsity of Michigan, The Radiation Laboratory, Ann Arbor. Michigan, U.S. A,

Summary
1

3t

The diffracted field due to a perfectly conducting conical ring, in the presence
of an axially oriented electric dipole located on the axis of symmetry 6 =0, is

obtained by means of an analytic continuation technique.

The conical ring occupies that region @ <6 < r -« of a spherical shell

b <r <a, which is limited by the surface of a cone of semi-angle 6 = ¢

Various particular cases are investigated in detail, and the solutions of

other diffraction problems by the same continuation technique are outlined.
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i. Iniroduction

In this paper, the diffracted electromagnetic field produced by an axially
orientad electric dincle iocated on the axis of symmetry of a perfectly conducting
conicai ring is considered. The free space surrounding the ring is divided into
various regions, and in each region the componeats of the diffracted electro-
magnetic field are derived from a properly chosen Hertzian function. The unknown
coefficients which appear in the expressions of these Hertzian functions are then
determined by requiring that the components of the total electromagnetic field
satisfy the boundary conditions on the surface of the ring, and be continuous across
the ideal surfaces which separate two adjacent regions of space.

Although 1t appears that this boundary value problem has not been previously
considered, the method of solution, which makes use of Legendre functions of
non-integral order and of an appropriate continuation technique, was firstly employed
by Schelkunoff (1941) in his treatment of the biconical antenna, and subsequently by
many other authors !see e.g. Northover (1962) .and Rogers, Schindler and Schultz
(1963)) .

In the following, the rationalized MKS system of units is used, and the time-

-iwt
dependence factor e W% is omitted.

2. Statement of the problem and boundary conditions.
With reference to a system of spherical polar ccordinates (r, 6, ), the
perfectly conducting conical ring occupies that region a <8 <7 -« of a spherical

shell b <r <a, which is limited by the surface of a cone of semi-angle 6 = a

\



(fig. 1 shows a cross section of the scatterer it a plant through the axis of
symmetry}. An axially oriented electric dipole is located on the axis of symmetry
of the ring at a point 6 =0, r = h.

The components of the diffracted (incident plus scattered) electric field
ﬁ and of the diffracted magnetic field FI’ in the free space surrounding the ring
can be derived from a scalar function U(r, 8) by means of the relations (Watson,
1918; Fock, 1945):

3 ) ou

E;m 3 (cin 6 5?0")' (1-1)
S ) -2
H¢=-.%Z_U., (1-3)
E¢=Hr=H6=O, (1-4)

where k= w leouo and Z = Iuo/'eo = 120 m ohms are respectively the free

space wave number and the free space intrinsic impedance. The Hertzian function
U is independent of the ¢ coordinate, due to the axial symmetry of the problem,

and must satisfy the reduced wave equation

(2 +x)U = o )
the radiation condition at infinity, and the ap;gropriate boundary conditions at the
ring's surface,

Since the conical ring is perfectly conductive, the tangential components of
the toial electric field at its surface are zero. On the slant surfaces 6 = a,

6 = r - a of the ring Er =0 or, using relations (1-1) and (2):



2

2
(—"’— +k2)(rU) -0, (3)
or

which implies that or the slant surfaces

U= r_l(A ainkr + B cos kr), (4)

where A and B are constants.

Onthebases r=a and r =b of the ring E9= 0, or:
I -, A R
3 { or } =0, (5)
which implies that
%ILQ =M,, onthebasis r=a,
or 1
(6)
=M2, on the basis r =b ,
where M1 and M2 are constants. '
Let us consider the function
ﬁ(r, 6) = U(r,6) - r-l(Asinkr + Bcoskr) , (7

which does not change the field components if used instead of U in relations.(1) ,

and which satisfies the reduced wave equation if U satisfies (2). On the slant
Hr D) ]

r~
surfaces U = 0; on the bases 5 0, provided that the arbitrary constants

are chosen to satisfy the relations:

M1 = k(A cos ka - B sin ka) , (8-1)

M2 = k(A cos kb - B sin kb) (8-2)
In conclusion, suppressing the superscript ~~ , we may impose the boundary

condition U = 0 on the slant surfaces 8 ~a and 6 = 7 -a, and the boundary

(rU)

condition
ar

= 0 on the spherical bases r =a and r =b of the conical ring.



The primary field due to the electric dipole may be derived from the function

U :
U = V ..
o] it

(9)
where V ie a constant with the dimensions of an electric voltage, and

1
R=(1'2+hz.—23.1rr;)"i , mn=cosb. (10)

The function U0 can be expanded in the form

()
iv 1
- e cw— + ( /L
Uo TR Z (2n 1)§n(kh)wn(kr) Pn.n), for r<h,
n:
(11)
o)
VL Z (2n+1)y (kh)¢ (kr) P {:) forr>h
kh kr “n n n""’ ’

(=)

=]

where Pn(n) is the Legendre polynominal of degree n and order zero, and rjzn and

{ are related to the Bessel and Hankel functions by the expressions:

1

. [7x N EZ Y
://n(x)- - Jn+§_(x), §n(7c) = j~2 Hn+§(z). (12)

In the following, the exact diffracted electromagnetic field is obtained by:
dividing the space around the ricg in various regions snd by determining the
appropriate Hertzian function for each region. The analysis is carried out in detail
for the two cases 0< h <b (in sections 3 and 4) and h > a (in sections 5 and 6), while
further extensions of the methad are outlined in section 7. In sections 3 and 4, the
case in which the dipole lies at the origin r = 0 is explicitly excluded in order to

avoid difficulties (Kleinman and Senior, 1963).



3. Genera! poiution for the case 0<h<b .

The free space surrounding the conical ring is divided into the following
four regions:
Regioni (r <b),

Region I (b<r<a; 0<6< a),
Reglon Il (b<r<a; r- a<6g7),

»

Region IV (r 3 a) .

The Hertzian functions for these four regions may be expanded into infinite
L]

geries of elementary wave functions. Since the scattered field must be finite

at all points of the axis of symmetry and must satisfy the radiation condition at

infinity, it is found that in region I:

Q
iv 1
= = + —_ = y. P -
U U1 Uo oy krg And/n(kr) n(n),
n=1

in region II:
’

®
iv 1 \
. U=U_=— — Cuy. (kr)+D.¢, (kr)} P ;
2" T kr L,{]dﬁl(r) JCBi(r)} g '™
=1 - :
in region III:
o)
T LA TR = = \ (.
U~U3— 5 er{Cij, (kr)+Dj§B.(kr)} PB. n;

and in region IV:

o o)
iv. 1 \ ‘
U= = — e £ ) .
U4 & i Bn ,n‘kr Pn(n) ;

(13)

(14)

(15)

(16)




where the positive numbers Bj are given by the equation:

ij(no) =0, . n,=cosa . (17

The series expansions (13) and (16) should contain terms corresponding
to n = 0; however, these terms give no contribution to the diffracted field
components, as it easily follows from formulas (1) and from the relation
Po(n) = 1. Therefore the ccefficients A0 and Bo may be chosen
arbitrarily, and we set A0 = BO = 0; similarly, the first term of expansion (11)
may be neglected without any loss of generality. In the following, n will be
a positive iAnteger.

The coefficients An’ Bn' Cj' Dj’ Ej and Bj are determined by impos-
ing the boundary conditions on the surface of the conical ring and the con-
tinuity of the diffracted field components across the ideal surfaces which
separate the four regions from one another. The boundary conditions on the
slant surfaces 8 =@, 6 =7 -a are automaticaily satisfied by the expansions

(14) and (15). In order that E, =0 on the spherical bases of the scatterer,

it must be:
3(1‘U1)
3 =0, for a <fH<7m -a, (18)
I \r=b ‘
a(rU4)
5% }rz =0 for a< <7 -a, (19)

while the continuity of Er’ E_ and H¢ acrossg the surfaces r =a and

0

r=b in the angular ranges 0 < 0<a and 7 -& <0< 7 is guaranteed by



the conditions:

a(ru,) : {awz)g
ar r=b or SI':b '
) {B‘rU3)
i or (rsp
a(rU4) a(rvu,)
al’ r=a - "_8-;__} r=a ’
ga(rUB))
Ul(b, 6) = U2(b, 0,
= 'U3(b, 8) ,
U4(a, 8) = Uz(a, 8) ,
= Ua(a, 8) ,

for 0<B8< a,

for #m -a <6< 7 ;

for 0<O6<a,

form ~a<8<7;

for 0 <6 <a,

form ~a<6gT;

for 0<OB<a,

form —-a<8<m.

(20)

(21)

(22)

(23)

The unknown coefficients are obtained from relations (18) to (23) by making

use of the orthogonality properties of the Legendre functions and of the Wronskian

relation for the Besgel functions.

Since this technique has been illustrated in detail

by other authors (see e.g. Northover, 1962), only the results are given here. Let

us set:
+
c. = L +8),
j 2 J7 ]
then one finds:
>
2n+i :
A = - S 1y (kh)E (kb) +2 _f (B)
n v (kb) | P n j=1 ™

* 1 -

D, = =(D.+D.);

j 2 j

Jet iy et e o)
T, (kb)+D: kb
LJ¢B]. JCB_E

(24)

] -




I's
AT L ye:
. b { ‘JB (ka) CBJ (ka S , (26)

+ + . - -
where C], and Dj are to be used for n even, Ci and Dj for n odd. and the
primes indicate derivatives with respect to the argument ka or kb. The coeffi-

+ +
cients CJ:' and D, are given by the equations:

J
@ . () ¢ (ka)
c’ g (ka)+ D, ¢, (ha = ~Z(4m-i-1)»3?) 1.2n
Y 1A m=1 i g2m(ka)
© Py
x> f (,Mtc v' (ka)+D, €' (ka) |, (27-1)
; 2m "2 ) 2 Bi 4 B }
Ty (kb)+D £ (kb)——Z am+1 ‘om) X
T
s B; I B m=1 Yo (k) (FJV
r ®
X [%m(kh)wzm(kb); LB { (kb)+D L’Bl(kb)”,
(27-2)
(B) ¢ (ka)
2m 1 2m-1
+D )= -
Gy, tka) + D, (ka Zum 1) ) 2l
i 2m-1
a
szl f2m 1 {c wB (ka‘+D( CBI (ka)}, (28-1)

-

- & 4m-1 f"m—l(B')

C. ¢, (kb)+D. ¢ (kb) = - } = L

j Bj i B v .
J m=1"2m-1

9]
X 'Liw2m_1(kh;a-w2m_l(kb) L om-1 P2 il B[(kb +DI[ CB[ ﬂ (28-2)
=1

Al



where;

n
(0]
08 ) = {PB (n)} “dn . (29)
. j
770
fB)= [°pP,mP (ndn. (30)
n j BJ, n
1

+ +
The coefficients Cj and Di are computed by means of relations (27),

Cj. and Dj_ by means of (28), then Cj’ Cj’ Dj and 5 are obtained from (24),
J

and An and Bn from (25) and (26). Thus, the problem of the exact determination
of the diffracted field is reduced to the problem of solving the two systems (27)
and (28) of infinite linear algebraic equations in an infinite number of unknowns.

4. Particular solutions for the case 0 <h <b ,

In this section, four particular solutions corresponding to special values
of the parameters a, b and o are considered, for the case 0< h < b,
The geometry of the scatterer is shown in fig. 2. It is found that

A =0, B_=02n+1)y¢y (kh), (31)
n n n

and therefore one has the primary field only. This result should have been ex-
pected, since when a =b regions Il and Il vanish. In the limit a =b, there is
no conical ring: one simply has a dipole in free space.

Case ¢=7/2, ,

The scatterer is now a perfectly conducting annular disc of zero thickness

10




(fig. 3). It is found that:

Bp=2i-1, i=l, 2, , (32)
and therefcre:
2i-1) = =« — 33
£(2j-1) -1 (33)
+i+1l
o D™ emy (25 -1): .
f (LJ-l) - . ) (34—1)
2m 2m+2j -1 , . . 2
2 (2m—2]+1)(m+])[m! (J—l)!]
: 2i-1) 2= — -
12m—1(J ) 4j-1 ~jm’ (34-2)
where 6 jm is the Kronecker symbol. It follows that:
A2m—l =0, (35-1)
4m+1 lr S
= - m— +
Aom ™ T Gy | Yam KBSy (k)
2m L
w N
+ 2j-1 vl + ' -
}:’l f2m( i-n {Cj uzj_l(kb) DJ. géj_l(kb)} , (35-2)
e
= (Z ._’\v,’ < _
By =W -y, o (kh), (36-1)
{;‘i
4m+1 ¢ . 1 + '
B = T f 2j-1 { C v ka)+D_ ¢ 36-
2m X (ka) L 2m' ) { Uy k&) + Dy ’2j-1(ka)}’ (36-2)
Cj 2 (, (37-1)
D = (4j-1)u -
i (4 )1”2]' —l(kh)’ (37-2)

While

11

the coefficients Cj and D are given by the syston:
i J



> [ (23—1)’{_

1 {
+ 4m+ 1 2m
kb)+D ¢ kb) =- ? kh)+
Cj lPZj—l( ) jSZj—l( wém(kb) f(2j-1) | l(‘Zm( )

m =1

| W— |
-

tuy, (kD) > f, @d-n {CI Vg (kb)+ D, ¢ S3p- l(kb)}

(38-1)
. }‘Dﬁ [, (25-1) ¢, (ka)
] k T -
cj wzj_l(ka)+bj§2j_l( a) —_J(4m+l) TR ™Y X
m=1 “
(38-2)

1

[0
X Z fzm(2l—l)

PR
2 C w21 1(ka)+D( §’2l_l(ka)}
=1

Case a =,

Region IV disappears (fig. 4), and in order to satisfy the radiation

condition,

c,=0, C =0. (39)

The coefficients An’ Dj and 6] are given by the relations:

o £, (8)
o1 4m+l  2m°"j | .
57 Ty ) Z oL kD) 1(8) {‘ Vo )+
: m=1 "2m j

(40)

+ w, (kb) Z (Bl)tﬁ (kb) Dy

12



® 8,
- 1 4m-1 2m-1"j | .
Dj ) ¢, (kb) m; w' (kb) f(BJ) [1¢2m-l(kh)+

Bj . 2m-1
(41)
+:jj2m_1(kb) i:] f2 (Bl)CBl(kb)D J ,
2nt+1 " !
A = - (lzh)t’ (kb) + f ( (I\b , (42)
n ¢ ' (kb) L¥n Z B J %; }
n

where Dj+ is to be used for n even, and Dj- for n odd.

Casea=wmw, a=7/2 .

This is the case of a circular aperture in a perfectly conducting screen (fig. 5).
Formulas (39), (40), (41) and (42) hold with Bj, f(Bj) and fn(Bj) given by (32), (33)

and (34). In particular,
)J = (4j-Dy,.  (kh), (43)

and therefore

A =0 (44)

5. General solution for the case h > a .

The geometry of the problem is that shown in fig. 1, but the dipole is now
located at a distance h > a from the origin. The free space surrounding the conical
ring is still divided into the four regions of section 3, and the Hertzian functions are

now given by the expressions:

v, - 2o Xig‘; a v (k)P (n), (45)

13 »



®
_wvo
U2 * T Z{cj d/Bj(kr) + dj CBj(kr)} PB (n) (46)

j=1 i
VLT (lr) + d, )
Ut o _J{ g, ¢, (kr } Py (), (47)
j=1 j J J
U, s U+ }:b ¢ (ke) P_in), (48)

in regions I, II, IIl and IV, respectively. The positive numbers 3 are given by

equation (17), and the coefficients an, bn' cj, ?,, dj and g

imposing the boundary conditions on the surface of the conical ring and the continuity

are determined by

of the diffracted field components across the ideal surfaces r =a and r =b which

separate the various regions of free space from one another. It is found that:

on+1 f () y ) 4 d ' (kb) (49)
L +

" T 2 {% Yg, I |

n :1 ]

j | ]

2nt+i
b = 3 (ka)‘ g, (kh'd/ (ka) +}_Jf (B)zc ‘Z/'g (ka)+d §’B (ka)}J

n =1 j J

where: '
= 1 < d = =(d,td,), o1
c; 5 (cjt rJ), i 2(J J) 51

+ + - -
and cj and d. are tobe used for n even, ‘cj and dj for n odd. The coefficients
t t : :
cj and dj are given hy the two following systems of infinite linear algebraic

equations in infinite unkprcwns:

14



® f,_(B)) wzm(kb)

) Vg () +df 8o () = - ) (4m+p) == x
] j m=1 1B) by k)
i . o (52-1)
X £ (B)tcw(kb)+d ¢ %)},
oy P (9 9, t %,
£ (B)
+ + 4m+1 2m j .
c, Yo (ka) +d, C, (ka) = - [1! (kh) -
) 7B 1B m=1 Sopi®)  fB) 2m
(52-2)
- (ka>Z f, (ﬁA, { l(ka)+dl CB, (ka)} ]
® f B8) v (kb)
- - 2m-171 Y2m-1
ey, (b)+d ¢, (kb) = -3 (4m-1) . x
3 Y8, Y 2 B vy 0
(53-1)
Q - 1 - t
x }2_1 £, B gcz Y, (kb) + dj CBl(kb)§ ,
- - D 4me1 fop- 1(31)
(53-2)

. |
_czm_l(m)z_;I , (B, {! Bl(ka)+dl§B{ (ka)}] ,

where f(Bj) and fn(Bj) are still given by (29) and (30).

6. Particular solutions for the case h > a,

In this section, four particular solutions corresponding to special values of the
parameters a, b, and a are considered, for the case h > a,

Case a = b. '
The geometry for this case is still that shown in fig. 2 but with h> a. One finds that

a = (2n+1y ¢ (kh) ; b =0, (54)
n n n

i.e. the limit a = b corresponds to a dipole in free space.

15



Case a = 1r[2

The geometry for this case is illustrated in fig. 3; the dipole must now

\

be located at a distaice h > a from the origin of the coordinate system. The

coefficients are given by the following relations:

& 1 (dm-1) ¢, (kh), (55-1)
4rn a0
- +i . + 4 ; )
qom " S Z £y 2i-1) {cj wzj_l(kb)+dj §2j_1(kb)} . (55-2)
2m j=1
b .
dm-1=0, (56-1)
4m+1 '
bzn- - §2, (;;-) [CZm(kh) d/zm (ka) +
. sm

. o ' _
fzm(2] -1) icj (1/21._1(ka)+dj Czj_l(ka)}} (56-2)

e

cj = (4-1) Czj_l\kh) , (57-1)
dj" = 0. (57-2)

o £, (2j-1) ¢, (kb)
i w2'—1(kb) td, §2._1(kb) = - Z (4m+1) 2 2'm X
nY o m=1 f2j-1) v, (kb)

(58-1)

'

[0 0]
+ '
x ;;1 f, (2£-1) {cl Uygy GOV, 8 (kb)} .

16



'

£ (25-1)
* i} 4m+l  2m ‘ ]
cj wzj_l(ka) +dj Czj_l(ka) = i‘ [1§2m(kh)

m=1 ¢ ka)  £(25-1)
(58-2)
R , :
o P +
- §2m(ka) %:‘1 fzmu.’l 1) {L[ lj/zl_l(ka) +d! §2l_l(ka)}} .
Case b=0.
Region I disappears (fig. 6), and
d =0, d=0. (59
] ]
The coefficients bn’ cj and gj are given by:
1 L 4m+l f2m(B')
ot = —a i —f—(B—)—J— [ifzm(kh) - (60)
© o7
- ¢, (ka) g: o i, ) |,
=]
)
oo ! . 4m1 omer®y c (kh) —
j v (ka) Z; e (ka) f(8.) YSom-1
Bj m= 2m-1
(61)
(D -—
(k) D T (B)U () s |
=1 £
© +
by = - [ e G ) 308 ke | (62)
n §’n (ka) n n =1 n ﬁj j

where c;' and c].— are to be used for n even and odd, respectively.

Caseb =0, a=7/2.

The scatterer is a perfectly conducting circular disc of zero thickness



(fig. 7). The coefficients of the Hertzian functicns expansions are given by
formulas (59), (60), (61) and {62}, ir which Bﬁ, f(Bj) and fq(‘Bj) kave the

valueg (32), (33) and (34). In particular

(@]
li

f 1) o}
(4y-~1) C?j--l(m) . (63)
and therefore,

b

by l=0 (64)

7. Further applications of the method.

The technique =mployed in the preceding sections can also be applied when
b<h<a, but U0 must then be expanded ir terms of the functions PB- (n),
which are orthogonal in 0 <0< . :

The case in which the source is an axially oriented magnetic dipole located
on the axis of symmetry of the conical ring is not very different from the electric

dipole case, and is dealt with in a similar way. The diffracted field components

can now be derived from a scalar function W(r, 8) through formulas:

1 3 W

: _ 9 g W (65-1
Ho = 756 36 i3 )’ )

1 8, 8w
Hy = - — 5= (r=g), (65-2)

8w
E¢ = ikZ o (65-3)
Hy = E =Ey=0, (65-4)
.where

(VZ+K)W = 0, (66)

18



and the boundary conditions reduce to %—‘g= 0 on the entire surface of the
conical ring.

In general, the method of sclution used in this paner is applicable to all »
diffraction problems for which:

1) The scatterer is é perfectly conducting body of revolution, whosg
surface is made of portions of concentric spherical surfaces and of portions of
conical surtaces Laving their commeoen vertex at the center of the concentric
spheres;

2) The source is an electric or magnetic dipole, axially oriented and

located on the axis of symmetry of the scatterer.

8. Corniclusion

The diffracted electromagnetic field for ihe particular configuration
antenna-gcatterer considered in this paper has been exactly determined.
However, the solution is of little practical dtility as it stands, because the
mode coefficients must satisfyv infinite sets of linear algebraic equations that
we are unable to golve,

In all practical applications, oaly a finite number of modes is taken into
account, and numerical results are cbtained with the aid of a computer. The
simplest way of choosing these pretferred modes is to consider only the first
few terms (lower modes) of the infinite series which represent the Hertzian
functions; this corresponds to replacing each infinite set of equations with a
truncated set {an example of this procedure is developed in the Appendix).

A better choice of the preferred set of modes might be based on the physical

consideration that modes in two azjacent regicns of space which are of like order



will show maximum coupling to each other; this selective mode coupling was
proposed and successfully employed by Plonus (1961, 1963) in ris calculations
of the radiatiou pattern of biconical antennas.
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10. Appendix.

Let us consider the case in which h > a and o= 7/2, and let us suppose that
ka is smaller than unity. Taking intc account only the first two modes in
regions II and ITI, the infinite set »f linear equations (58) reduces to a truncated

X ) + +
set of four equations in the four unknowns ¢ c d, and d, . If the Bessel

1’ 2 1
and Hankel functions are expanded out in power series of ka, it is found that:
Q+
S 1y [ 2] i
C1 * TG Cz(kh) 3 ka {1%—0 L(ka)J . (A-1)
+
SR KA gRN %2 (ka) 1+O[(k')2] (A-2)
¢y 16 9 Q a a .
Q
_ 5i Sl ] [ 2] A-3
d1 T §2(kh) 9 A (ka) (l+0 (ka) , (A-3)
. : Q, .
i 2 3 5 r 2
S ‘h) —2 . ; . A-
d2 (34 §2 (kh) Q A (ka) {1 +0 L(ka) ]1 , (A-4)
where
0ea- 2g¢n, (A-5)




2 1
. (—A . \L\‘
3 T8 83 3 7%
. 1 A
“B13 7 i?’33 g13
Q =
1 2 4 1
T i )5 -+
( 3 2(11 4’3313 3 111
o 1 4
- ' 4, - =)A
2 213‘5 (alyq- = 213
1es) _
. 4t
- f s
L o Loy (#) o V)
m=]
0 )
v 4m+1 o
= 5 on i {uif _ “1.3 y =
1{4]/ (f'_..__n I2m+1 Izm M 211](]/)' (IJ 1, 3, 1%

m=1

+
and the determinants Qf Q2

(A-6)

(A-T)

(A-8)

, Ql and Q2 are obtained from Q by replacing

respectively the first, second, third and fourth column with the column:

1

1
(
0
[

In particular, when A= 0 (see fig. 7) one has that

l+4(

- )
7 T HByy 7By

~

+ )
{ T e kL
1 oo T 16 M ka

71 1 2
(5 +26,,) (7 v48,, ) -867

¥

(A-9)

13 .
5 {1 +0'L(ka)2]} , (A-10)



= +2(g, . -K..,)
()peo = 22 g )0t 21D {1+0[(ka)2]},
<§ * 2g11) <7+ 4g33) -85 (A-11)
=0, (A-12)

d.) = (&)
( 1" b=0 ( 2}b:::0

Substitution of relations {A-1} to (A-4) into formula (56-2) yieids:

_ 5i(4m+1) .2m+3
b2m ¥ Bmldm -1 §2(kh)(ka) X
oo e Fam  oma HmD s 2) - (A1)
5 (4m+1)!! rz(kh) ‘ 6Q 1 12
+
f,_ (3} , Q 3
2m 2 A 2
L8 2y 2
o (5 +9, JHHO [(kaf]} ,
where (4m -1)!"' =1 x3x5... x{(4m-1) is the semi-factorial of (4m-1) .
The Hertzian function U4 in region IV is therefore given by (see formula (48)):
¢ (kh) §, (kr)
\ 2 2 5 [ 71 -
= - — - - } ! -
U4 U0 53 M oy (ka)” (1+3cos26) + 0 |(ka) P (A-14)
where:
25 1 .+ 1 _+ 1 1 3
=14 (=Q -2Q + — + = -
M=1+55 (3% g9+ U TRE) (A-15)
and in particular:
2 79 175 273 233
168g 8.5 - 54813 - T8, Y 7 8137 16 %33 " 199
(M) - 11°33 13 16 °11 8 13 16 ®33 192 . (A-16)

b=0 (14 _ 2
(1+6g11)\1 28g33) 54g13
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FIGURE CAPTIONS

Geometry for the scattering problem.

Cagse 0<h<b=a.

Case 0<h<b. o=nl2.

Cagse 0<h<bhb, a
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Case 0U<<h<b, a
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Case h>a, b=0.

Caseh>a, b=0, a=7r/2

























